كتاب Mechanical Engineering Design
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Mechanical Engineering Design

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18726
التقييم : 34712
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Mechanical Engineering Design  Empty
مُساهمةموضوع: كتاب Mechanical Engineering Design    كتاب Mechanical Engineering Design  Emptyالثلاثاء 30 أغسطس 2022, 12:17 am

أخواني في الله
أحضرت لكم كتاب
Mechanical Engineering Design
Third Edition
Ansel C. Ugural
with Contributors
Youngjin Chung Errol A. Ugural

كتاب Mechanical Engineering Design  M_e_d_12
و المحتوى كما يلي :


Contents
Preface
Acknowledgments
Author
Symbols
Abbreviations
SECTION I Fundamentals
Chapter 1 Introduction
1.1 Scope of the Book
1.2 Mechanical Engineering Design
1.2.1 ABET Definition of Design
1.3 Design Process
1.3.1 Phases of Design
1.3.1.1 Identification of Need
1.3.1.2 Definition of the Problem
1.3.1.3 Synthesis
1.3.1.4 Analysis
1.3.1.5 Testing and Evaluation
1.3.1.6 Presentation
1.3.2 Design Considerations
1.4 Design Analysis
1.4.1 Engineering Modeling1.4.2 Rational Design Procedure
1.4.3 Methods of Analysis
1.5 Problem Formulation and Computation
1.5.1 Solving Mechanical Component Problems
1.5.1.1 Significant Digits
1.5.2 Computational Tools for Design Problems
1.5.3 The Best Time to Solve Problems
1.6 Factor of Safety and Design Codes
1.6.1 Definitions
1.6.2 Selection of a Factor of Safety
1.6.3 Design and Safety Codes
1.7 Units and Conversion
1.8 Loading Classes and Equilibrium
1.8.1 Conditions of Equilibrium
1.8.2 Internal Load Resultants
1.8.3 Sign Convention
1.9 Free-Body Diagrams and Load Analysis
1.10 Case Studies in Engineering
1.11 Work, Energy, and Power
1.11.1 Transmission of Power by Rotating Shafts
and Wheels
1.12 Stress Components
1.12.1 Sign Convention
1.12.2 Special Cases of State of Stress
1.13 Normal and Shear Strains
Problems
Chapter 2 Materials2.1 Introduction
2.2 Material Property Definitions
2.3 Static Strength
2.3.1 Stress–Strain Diagrams for Ductile Materials
2.3.1.1 Yield Strength
2.3.1.2 Strain Hardening: Cold Working
2.3.1.3 Ultimate Tensile Strength
2.3.1.4 Offset Yield Strength
2.3.2 Stress–Strain Diagram for Brittle Materials
2.3.3 Stress–Strain Diagrams in Compression
2.4 Hooke’s Law and Modulus of Elasticity
2.5 Generalized Hooke’s Law
2.5.1 Volume Change
2.6 Thermal Stress–Strain Relations
2.7 Temperature and Stress–Strain Properties
2.7.1 Short-Time Effects of Elevated and Low
Temperatures
2.7.2 Long-Time Effects of Elevated Temperatures:
Creep
2.8 Moduli of Resilience and Toughness
2.8.1 Modulus of Resilience
2.8.2 Modulus of Toughness
2.9 Dynamic and Thermal Effects
2.9.1 Strain Rate
2.9.2 Ductile–Brittle Transition
2.10 Hardness
2.10.1 Brinell Hardness
2.10.2 Rockwell Hardness2.10.3 Vickers Hardness
2.10.4 Shore Scleroscope
2.10.5 Relationships among Hardness and Ultimate
Strength in Tension
2.11 Processes to Improve Hardness and the Strength of
Metals
2.11.1 Mechanical Treatment
2.11.1.1 Cold Working
2.11.1.2 Hot Working
2.11.2 Heat Treatment
2.11.3 Coatings
2.11.3.1 Galvanization
2.11.3.2 Electroplating
2.11.3.3 Anodizing
2.12 General Properties of Metals
2.12.1 Iron and Steel
2.12.2 Cast Irons
2.12.3 Steels
2.12.3.1 Plain Carbon Steels
2.12.3.2 Alloy Steels
2.12.3.3 Stainless Steels
2.12.3.4 Steel Numbering Systems
2.12.4 Aluminum and Copper Alloys
2.13 General Properties of Nonmetals
2.13.1 Plastics
2.13.2 Ceramics and Glasses
2.13.3 Composites2.13.3.1 Fiber-Reinforced Composite
Materials
2.14 Selecting Materials
2.14.1 Strength Density Chart
Problems
Chapter 3 Stress and Strain
3.1 Introduction
3.2 Stresses in Axially Loaded Members
3.2.1 Design of Tension Members
3.3 Direct Shear Stress and Bearing Stress
3.4 Thin-Walled Pressure Vessels
3.5 Stress in Members in Torsion
3.5.1 Circular Cross-Sections
3.5.2 Noncircular Cross-Sections
3.6 Shear and Moment in Beams
3.6.1 Load, Shear, and Moment Relationships
3.6.2 Shear and Moment Diagrams
3.7 Stresses in Beams
3.7.1 Assumptions of Beam Theory
3.7.2 Normal Stress
3.7.2.1 Curved Beam of a Rectangular CrossSection
3.7.3 Shear Stress
3.7.3.1 Rectangular Cross-Section
3.7.3.2 Various Cross-Sections
3.8 Design of Beams
3.8.1 Prismatic Beams3.8.2 Beams of Constant Strength
3.9 Plane Stress
3.9.1 Mohr’s Circle for Stress
3.9.1.1 Axial Loading
3.9.1.2 Torsion
3.10 Combined Stresses
3.11 Plane Strain
3.11.1 Mohr’s Circle for Strain
3.12 Measurement of Strain: Strain Rosette
3.13 Stress-Concentration Factors
3.14 Importance of Stress-Concentration Factors in
Design
3.14.1 Fatigue Loading
3.14.2 Static Loading
*3.15 Three-Dimensional Stress
3.15.1 Principal Stresses in Three Dimensions
3.15.2 Simplified Transformation for ThreeDimensional Stress
3.15.3 Octahedral Stresses
*3.16 Equations of Equilibrium for Stress
*3.17 Strain-Displacement Relations: Exact Solutions
3.17.1 Problems in Applied Elasticity
Problems
Chapter 4 Deflection and Impact
4.1 Introduction
4.1.1 Comparison of Various Deflection Methods
4.2 Deflection of Axially Loaded Members4.3 Angle of Twist of Shafts
4.3.1 Circular Sections
4.3.2 Noncircular Sections
4.4 Deflection of Beams by Integration
4.5 Beam Deflections by Superposition
4.6 Beam Deflection by the Moment-Area Method
4.6.1 Moment-Area Theorems
4.6.2 Application of the Moment-Area Method
4.7 Impact Loading
4.8 Longitudinal and Bending Impact
4.8.1 Freely Falling Weight
Special Cases
4.8.2 Horizontally Moving Weight
4.9 Torsional Impact
Problems
Chapter 5 Energy Methods and Stability
5.1 Introduction
5.2 Strain Energy
5.2.1 Components of Strain Energy
5.3 Strain Energy in Common Members
5.3.1 Axially Loaded Bars
5.3.2 Circular Torsion Bars
5.3.3 Beams
5.4 Work–Energy Method
5.5 Castigliano’s Theorem
*5.5.1 Application to Trusses
5.6 Statically Indeterminate Problems5.7 Virtual Work Principle
5.7.1 Castigliano’s First Theorem
*5.8 Use of Trigonometric Series in Energy Methods
5.9 Buckling of Columns
5.9.1 Pin-Ended Columns
5.9.2 Columns with Other End Conditions
5.10 Critical Stress in a Column
5.10.1 Long Columns
5.10.2 Short Columns or Struts
5.10.3 Intermediate Columns
5.11 Initially Curved Columns
5.11.1 Total Deflection
5.11.2 Critical Stress
5.12 Eccentric Loads and the Secant Formula
5.12.1 Short Columns
5.13 Design Formulas for Columns
*5.14 Energy Methods Applied to Buckling
*5.15 Buckling of Rectangular Plates
Problems
SECTION II Failure Prevention
Chapter 6 Static Failure Criteria and Reliability
6.1 Introduction
6.2 Introduction to Fracture Mechanics
6.3 Stress-Intensity Factors
6.4 Fracture Toughness
6.5 Yield and Fracture Criteria
6.6 Maximum Shear Stress Theory6.6.1 Typical Case of Combined Loading
6.7 Maximum Distortion Energy Theory
6.7.1 Yield Surfaces for Triaxial State of Stress
6.7.2 Typical Case of Combined Loading
6.8 Octahedral Shear Stress Theory
6.9 Comparison of the Yielding Theories
6.10 Maximum Principal Stress Theory
6.11 Mohr’s Theory
6.12 Coulomb–Mohr Theory
6.13 Reliability
6.14 Normal Distributions
6.15 Reliability Method and Margin of Safety
Problems
Chapter 7 Fatigue Failure Criteria
7.1 Introduction
7.2 Nature of Fatigue Failures
7.3 Fatigue Tests
7.3.1 Reversed Bending Test
7.4 S–N Diagrams
7.4.1 Endurance Limit and Fatigue Strength
7.4.1.1 Bending Fatigue Strength
7.4.1.2 Axial Fatigue Strength
7.4.1.3 Torsional Fatigue Strength
7.4.2 Fatigue Regimes
7.5 Estimating the Endurance Limit and Fatigue
Strength
7.6 Modified Endurance Limit7.7 Endurance Limit Reduction Factors
7.7.1 Surface Finish Factor
7.7.2 Reliability Factor
7.7.3 Size Factor
7.7.4 Temperature Factor
7.7.5 Fatigue Stress-Concentration Factor
7.8 Fluctuating Stresses
7.9 Theories of Fatigue Failure
7.10 Comparison of the Fatigue Criteria
7.11 Design for Simple Fluctuating Loads
7.11.1 Design Graphs of Failure Criteria
7.12 Design for Combined Fluctuating Loads
7.12.1 Alternative Derivation
7.13 Prediction of Cumulative Fatigue Damage
7.13.1 Miner’s Cumulative Rule
7.14 Fracture Mechanics Approach to Fatigue
Problems
Chapter 8 Surface Failure
8.1 Introduction
8.2 Corrosion
8.2.1 Corrosion and Stress Combined
8.2.1.1 Stress Corrosion
8.2.1.2 Corrosion Fatigue
8.2.2 Corrosion Wear
8.2.2.1 Fretting
8.2.2.2 Cavitation Damage
8.3 Friction8.4 Wear
8.4.1 Adhesive Wear
8.4.2 Abrasive Wear
8.5 Wear Equation
8.6 Contact-Stress Distributions: Hertz Theory
8.6.1 Johnson–Kendall–Roberts (JKR) Theory
8.7 Spherical and Cylindrical Surfaces in Contact
8.7.1 Two Spheres in Contact (Figure 8.6)
8.7.2 Two Cylinders in Contact (Figure 8.7)
*8.8 Maximum Stress in General Contact
8.9 Surface-Fatigue Failure
8.9.1 Stresses Affecting Surface Fatigue
8.10 Prevention of Surface Damage
Problems
SECTION III Machine Component Design
Chapter 9 Shafts and Associated Parts
9.1 Introduction
9.2 Materials Used for Shafting
9.3 Design of Shafts in Steady Torsion
9.4 Combined Static Loadings on Shafts
9.4.1 Bending, Torsion, and Axial Loads
9.4.2 Bending and Torsion
9.5 Design of Shafts for Fluctuating and Shock Loads
9.5.1 Shock Factors
9.5.2 Steady-State Operation
9.5.3 Displacements
9.6 Interference Fits9.7 Critical Speed of Shafts
9.7.1 Rayleigh Method
9.7.2 Dunkerley’s Method
9.7.3 Shaft Whirl
9.8 Mounting Parts
9.8.1 Keys
9.8.2 Pins
9.8.3 Screws
9.8.4 Rings and Collars
9.8.5 Methods of Axially Positioning of Hubs
9.9 Stresses in Keys
9.10 Splines
9.11 Couplings
9.11.1 Clamped Rigid Couplings
9.11.2 Flanged Rigid Couplings
9.11.3 Flexible Couplings
9.12 Universal Joints
Problems
Chapter 10 Bearings and Lubrication
10.1 Introduction
Part A: Lubrication and Journal Bearings
10.2 Lubricants
10.2.1 Liquid Lubricants
10.2.2 Solid Lubricants
10.3 Types of Journal Bearings
10.4 Forms of Lubrication
10.4.1 Hydrodynamic Lubrication10.4.2 Mixed Lubrication
10.4.3 Boundary Lubrication
10.4.4 Elastohydrodynamic Lubrication
10.4.5 Hydrostatic Lubrication
10.5 Lubricant Viscosity
10.5.1 Units of Viscosity
10.5.2 Viscosity in terms of Saybolt Universal
Seconds
10.5.3 Effects of Temperature and Pressure
10.6 Petroff’s Bearing Equation
10.6.1 Friction Torque
10.6.2 Friction Power
10.7 Hydrodynamic Lubrication Theory
10.7.1 Reynolds’s Equation of Hydrodynamic
Lubrication
10.7.1.1 Long Bearings
10.7.1.2 Short Bearings
10.8 Design of Journal Bearings
10.8.1 Lubricants
10.8.2 Bearing Load
10.8.3 Length–Diameter Ratio
10.8.4 Clearance
10.8.5 Design Charts
10.9 Lubricant Supply to Journal Bearings
10.9.1 Splash Method
10.9.2 Miscellaneous Methods
10.9.3 Pressure-Fed Systems
10.9.4 Methods for Oil Distribution10.10 Heat Balance of Journal Bearings
10.10.1 Heat Dissipated
10.10.2 Heat Developed
10.11 Materials for Journal Bearings
10.11.1 Alloys
10.11.2 Sintered Materials
10.11.3 Nonmetallic Materials
Part B: Rolling-Element Bearings
10.12 Types and Dimensions of Rolling Bearings
10.12.1 Ball Bearings
10.12.2 Roller Bearings
10.12.3 Special Bearings
10.12.4 Standard Dimensions for Bearings
10.13 Rolling Bearing Life
10.14 Equivalent Radial Load
10.14.1 Equivalent Shock Loading
10.15 Selection of Rolling Bearings
10.15.1 Reliability Requirement
10.16 Materials and Lubricants of Rolling Bearings
10.17 Mounting and Closure of Rolling Bearings
Problems
Chapter 11 Spur Gears
11.1 Introduction
11.2 Geometry and Nomenclature
11.2.1 Properties of Gear Tooth
11.3 Fundamentals
11.3.1 Basic Law of Gearing11.3.2 Involute Tooth Form
11.4 Gear Tooth Action and Systems of Gearing
11.4.1 Standard Gear Teeth
11.5 Contact Ratio and Interference
11.6 Gear Trains
11.6.1 Planetary Gear Trains
11.7 Transmitted Load
11.7.1 Dynamic Effects
11.8 Bending Strength of a Gear Tooth: The Lewis
Formula
11.8.1 Uniform Strength Gear Tooth
11.8.2 Effect of Stress Concentration
11.8.3 Requirement for Satisfactory Gear
Performance
11.9 Design for the Bending Strength of a Gear Tooth:
The AGMA Method
11.10 Wear Strength of a Gear Tooth: The Buckingham
Formula
11.11 Design for the Wear Strength of a Gear Tooth:
The AGMA Method
11.12 Materials for Gears
11.13 Gear Manufacturing
11.13.1 Forming Gear Teeth
11.13.2 Finishing Processes
Problems
Chapter 12 Helical, Bevel, and Worm Gears
12.1 Introduction12.2 Helical Gears
12.3 Helical Gear Geometry
12.3.1 Virtual Number of Teeth
12.3.2 Contact Ratios
12.4 Helical Gear Tooth Loads
12.5 Helical Gear Tooth Bending and Wear Strengths
12.5.1 Lewis Equation
12.5.2 Buckingham Equation
12.5.3 AGMA Equations
12.6 Bevel Gears
12.6.1 Straight Bevel Gears
12.6.1.1 Geometry
12.6.2 Virtual Number of Teeth
12.7 Tooth Loads of Straight Bevel Gears
12.8 Bevel Gear Tooth Bending and Wear Strengths
12.8.1 Lewis Equation
12.8.2 Buckingham Equation
12.8.3 AGMA Equations
12.9 Worm Gearsets
12.9.1 Worm Gear Geometry
12.10 Worm Gear Bending and Wear Strengths
12.10.1 Lewis Equation
12.10.2 Limit Load for Wear
12.10.3 AGMA Equations
12.11 Thermal Capacity of Worm Gearsets
12.11.1 Worm Gear Efficiency
Problems
Chapter 13 Belts, Chains, Clutches, and Brakes13.1 Introduction
Part A: Flexible Elements
13.2 Belts
13.2.1 Flat and Round Belts
13.2.2 V Belts
13.2.3 Timing Belts
13.3 Belt Drives
13.3.1 Transmitted Power
13.3.2 Contact Angle
13.3.3 Belt Length and Center Distance
13.3.4 Maintaining the Initial Tension of the Belt
13.4 Belt Tension Relationships
13.4.1 Flat or Round Belt Drives
13.4.2 V-Belt Drives
13.5 Design of V Belt Drives
13.6 Chain Drives
13.7 Common Chain Types
13.7.1 Roller Chains
13.7.1.1 Chordal Action
13.7.2 Power Capacity of Roller Chains
13.7.3 Inverted Tooth Chains
Part B: High-Friction Devices
13.8 Materials for Brakes and Clutches
13.9 Internal Expanding Drum Clutches and Brakes
13.10 Disk Clutches and Brakes
13.10.1 Disk Clutches
13.10.1.1 Uniform Wear
13.10.1.2 Uniform Pressure13.10.2 Disk Brakes
13.10.2.1 Caliper-Type Disk Brakes
13.11 Cone Clutches and Brakes
13.11.1 Uniform Wear
13.11.2 Uniform Pressure
13.12 Band Brakes
13.13 Short-Shoe Drum Brakes
13.13.1 Self-Energizing and Self-Locking Brakes
13.14 Long-Shoe Drum Brakes
13.14.1 External Long-Shoe Drum Brakes
13.14.1.1 Symmetrically Loaded PivotShoe Brakes
13.14.2 Internal Long-Shoe Drum Brakes
13.15 Energy Absorption and Cooling
13.15.1 Energy Sources
13.15.2 Temperature Rise
Problems
Chapter 14 Springs
14.1 Introduction
14.2 Torsion Bars
14.3 Helical Tension and Compression Springs
14.3.1 Stresses
14.3.2 Deflection
14.3.3 Spring Rate
14.4 Spring Materials
14.4.1 Spring Wire
14.4.1.1 Ultimate Strength in Tension14.4.1.2 Yield Strength in Shear and
Endurance Limit in Shear
14.5 Helical Compression Springs
14.5.1 Design Procedure for Static Loading
14.6 Buckling of Helical Compression Springs
14.6.1 Aspect Ratio
14.7 Fatigue of Springs
14.8 Design of Helical Compression Springs for
Fatigue Loading
14.8.1 Goodman Criteria Helical Springs
14.8.2 Compression Spring Surge
14.9 Helical Extension Springs
14.9.1 Coil Body
14.9.2 End Hook Bending and Shear
14.10 Torsion Springs
14.10.1 Helical Torsion Springs
14.10.2 Fatigue Loading
14.10.3 Spiral Torsion Springs
14.11 Leaf Springs
14.11.1 Multileaf Springs
14.12 Miscellaneous Springs
14.12.1 Constant-Force Springs
14.12.2 Belleville Springs
14.12.3 Rubber Springs
Problems
Chapter 15 Power Screws, Fasteners, and Connections
15.1 Introduction15.2 Standard Thread Forms
15.2.1 Unified and ISO Thread Form
15.2.2 Power Screw Thread Forms
15.3 Mechanics of Power Screws
15.3.1 Torque to Lift the Load
15.3.2 Torque to Lower the Load
15.3.3 Values of Friction Coefficients
15.3.4 Values of Thread Angle in the Normal
Plane
15.4 Overhauling and Efficiency of Power Screws
15.4.1 Screw Efficiency
15.5 Ball Screws
15.6 Threaded Fastener Types
15.6.1 Fastener Materials and Strengths
15.7 Stresses in Screws
15.7.1 Axial Stress
15.7.2 Torsional Shear Stress
15.7.3 Combined Torsion and Axial Stress
15.7.4 Bearing Stress
15.7.5 Direct Shear Stress
15.7.6 Buckling Stress for Power Screws
15.8 Bolt Tightening and Preload
15.8.1 Torque Requirement
15.9 Tension Joints under Static Loading
15.9.1 Deflections Due to Preload
15.9.2 Factors of Safety for a Joint
15.9.3 Joint-Separating Force
15.10 Gasketed Joints15.11 Determining the Joint Stiffness Constants
15.11.1 Bolt Stiffness
15.11.2 Stiffness of Clamped Parts
15.12 Tension Joints under Dynamic Loading
15.13 Riveted and Bolted Joints Loaded in Shear
*15.13.1 Joint Types and Efficiency
15.14 Shear of Rivets or Bolts due to Eccentric
Loading
15.15 Welding
15.15.1 Welding Processes and Properties
15.15.2 Strength of Welded Joints
15.15.3 Stress Concentration and Fatigue in Welds
15.16 Welded Joints Subjected to Eccentric Loading
15.16.1 Torsion in Welded Joints
15.16.2 Bending in Welded Joints
15.16.2.1 Centroid of the Weld Group
15.16.2.2 Moments of Inertia of a Weld
15.17 Brazing and Soldering
15.17.1 Brazing Process
15.17.2 Soldering Process
15.18 Adhesive Bonding
15.18.1 Design of Bonded Joints
Problems
Chapter 16 Miscellaneous Mechanical Components
16.1 Introduction
16.2 Basic Relations
16.3 Thick-Walled Cylinders under Pressure16.3.1 Solution of the Basic Relations
16.3.2 Stress and Radial Displacement for
Cylinder
16.3.3 Special Cases
16.3.3.1 Internal Pressure Only
16.3.3.2 External Pressure Only
16.3.3.3 Cylinder with an Eccentric Bore
16.3.3.4 Thick-Walled Spheres
16.4 Compound Cylinders: Press or Shrink Fits
16.5 Disk Flywheels
16.5.1 Stress and Displacement
16.5.2 Energy Stored
*16.6 Thermal Stresses in Cylinders
16.6.1 Steady-Flow Temperature Change T(r)
16.6.2 Special Case
*16.7 Exact Stresses in Curved Beams
16.8 Curved Beam Formula
16.9 Various Thin-Walled Pressure Vessels and Piping
16.9.1 Filament-Wound Pressure Vessels
Problems
Chapter 17 Finite Element Analysis in Design*
17.1 Introduction
17.2 Bar Element
17.2.1 Direct Equilibrium Method
17.2.2 Energy Method
17.2.3 Global Stiffness Matrix
17.2.4 Axial Force in an Element17.3 Formulation of the Finite Element Method
17.3.1 Method of Assemblage of the Values of [k]e
17.3.2 Procedure for Solving a Problem
17.4 Beam and Frame Elements
17.4.1 Arbitrarily Oriented Beam Element
17.4.2 Arbitrarily Oriented Axial–Flexural Beam
or Frame Element
17.5 Two-Dimensional Elements
17.5.1 Displacement Functions
17.5.2 Strain, Stress, and Displacement Matrices
17.5.3 Governing Equations for 2D Problems
17.6 Triangular Element
17.6.1 Displacement Function
17.6.2 Stiffness Matrix
17.6.3 Element Nodal Forces Due to Surface
Loading
17.7 Plane Stress Case Studies
Problems
Chapter 18 Case Studies in Machine Design
18.1 Introduction
18.2 Floor Crane with Electric Winch
18.3 High-Speed Cutter
Problems
Appendix A: Tables
Appendix B: Material Properties
Appendix C: Stress-Concentration FactorsAppendix D: Solution of the Stress Cubic Equation
Appendix E: Introduction to MATLAB®
Answers to Selected Problems
References
Index
Index
A
Abrasive wear, 322–324
Absolute viscosity, 388
Acme screw, 596
Active coils, 573
Actual load, 447
Actuating force, 528
Addendum, 427
Adhesives, 641
bonding, 641
wear, 322–323
AGMA elastic coefficients (spur gears), 457
AGMA equations
bevel gears, 487–488
helical gears, 474
spur gears, 446–452, 455–459
AISI/SAE numbering system, 71
Allowable bending load, 444, 486
Allowable bending stress, 446–447, 452, 487
Allowable contact stress, 455, 456, 458
Allowable surface stress, 488
Allowable wear load, 454–455
Alloy
aluminum, 72
casting, 71
copper, 72
defined, 66
Q&T steel, 71
silicon, 69
steels, 69–72
wrought, 72
Alternating stress, 293
Angle
of articulation, 520
contact, 408, 508
helix, 468
lead, 490, 593pitch, 482
pressure, 431
thread, 594
of wrap, 508
Angular-contact bearing, 408
Annulus, 426
ASME code for pressure vessels, 13, 678
ASME shaft design equation, 355
Aspect ratio, 225
ASTM numbering system
cast iron, 69–70
steel, 70
Automotive-type multileaf spring, 582–583
AWS numbering system, 634
Axial fatigue strength, 284
Axial pitch, 471, 489, 628
Axial rigidity, 150
Axisymmetric problems, 655–686
compound cylinders, 661–664
cylinder with central hole, 670
disk flywheel, 664–670
filament-wound pressure vessels, 678–679
pressure vessels/piping, 677–678
stresses in curved beams, 671–673
thermal stresses in cylinders, 670–671
thick-walled cylinders under pressure, 657–661
Winkler’s formula, 674
Axle, 345
B
Babbitt alloys, 405
Back-driving screw, 602
Backlash, 428–429
Back-to-back (DB) mounting arrangements, 420
Ball bearing, 408–410
capacity analysis, 335–336
geometry/nomenclature, 409
Ball screw, 605–606
Band brake, 525, 534–536
Base circle, 430
Basic dynamic load rating, 412
Basic principles of analysis, 8
Basic static load rating, 412
Beam
assumptions in beam theory, 96
built-up, 100
element, 697–703
deflection, 156, 158–161impact loading, 164–165
statically indeterminate, 16, 698–700
strain energy, 185–190
Beam strength of gear tooth, 442–443
Bearings, 381–424; see also Journal bearings; Lubrication; Rolling-element bearings
diameter, 399
length, 399
life, 411
mounting, 420–421
stress, 85–87
Belleville, J.F., 584
Belleville springs, 584–586
Belt, 503
flat, 504
round, 504
timing, 505–506
V, 504–505
Belt drives, 507–511
belt pitch length, 508
center distance, 509
contact angle, 508
flat, 511–513
initial tension, 510
round, 511–513
timing, 505–506
transmitted power, 507–508
V-belt, 513, 515
Belt tension relationships, 511–513
Bending fatigue strength, 283–284
Bevel gears, 481–484
AGMA equations, 487–488
bending/wear strengths, 486–488
Buckingham equation, 486–487
Lewis equation, 486
notation, 483
straight, 484–486
tooth loads, 484–486
virtual number of teeth, 470
Bolt, 611–612; see also Joints
safely factor, 615
shear forces—eccentric loading, 630–633
stiffness, 617
strength, 611
tension—static loading, 612–615
tightening, 611–612
twisting-off strength, 271
Bonding, 593; see also Connections
adhesive, 641–642brazing, 640
soldering, 641
Boundary lubrication, 385
Boyd, J., 398
Brakes and clutches, 503, 524–526
band brakes, 534–536
cone, 532–534
disk brake, 530–532
disk clutch, 527–530
energy absorption and cooling, 544–546
energy sources, 544–545
internal expanding drum, 526
long-shoe drum brakes, 538–544
materials, 524–526
short-shoe drum brakes, 536–538
temperature rise, 545–546
Brazing, 640
Brinell hardness number (H B), 64
Brittle–ductile transition, 60–62
Buckingham, E., 453
Buckingham equation
bevel gears, 486–487
helical gears, 473–474
spur gears, 452–455
Buckling design of members
buckling of columns, 204–207 (see also Column)
compression springs, 565–568
cylindrical/spherical shells, 677–679
rectangular plates, 224–226
secant formula, 214–218
Burnishing, 461
Bushing, 382
Butt joint, 628
Butt weld, 634, 635
C
Caliper disk brake, 530–532
Camshaft torque requirement, 22–23
Cantilever spring of uniform stress, 579
Cap screw, 364, 606
Carbon-graphite bearings, 407
Carburizing, 68, 345, 460
Cardan coupling, 371
Case-hardened gears, 460
Case studies, 19
ball bearing—shaft—gear box—winch crane, 735–739
belt design of high-speed cutting machine, 746–749
bolt cutterdeflection analysis, 159–160
loading analysis, 19–21
stress analysis, 117–118
brake design of high-speed cutting machine, 749
cam and follower analysis of intermittent motion mechanism, 332–333
camshaft fatigue design of intermittent motion mechanism, 300–303
crane hook—winch crane, 742–744
design of speed reducer, 451–452
high speed turbine, 477–481
machine design, 723–755
rupture of Titanic’s hull, 62–63
screw—winch crane hook, 742–744
spring design—feed mechanism—high speed cutting machine, 750–751
spur gear train of winch crane, 731–735
welded joint—winch crane frame, 744–746
winch crane frame loading analysis, 725–727
winch crane gearbox—shafting design, 735–739
finite element analysis
stress concentration—plate with hole—uniaxial tension, 711–712
stresses/displacements—plate in tension, 709–711
truss, 693–697
Clash allowance, 563
Castigliano, A., 193
Castigliano’s theorems, 193–196
Cast iron gears, 459–460
Cavitation damage, 321
Center distance, 428, 431, 490
Centrifugal clutch, 526
Centrifugal force, 361, 511–512
Chain drives, 503, 517–518
inverted tooth chain, 523–524
roller chains, 520–523
types, 518
Chain length, 517
Chain pitch, 518, 523
Chain velocity, 518, 520
Chordal action, 518–520
Circular pitch, 426, 434
Circumferential groove, 403
Clamp collars, 345, 365
Clamped rigid couplings, 369
Clash allowance, 563, 570
Class 1 fit, 595
Class 2 fit, 595
Class 3 fit, 595
Clearance
fit, 358
gears, 428journal bearings, 398
Clutches, 503, 524–526; see also Brakes and clutches
Coarse thread, 595, 597
Code of Ethics for Engineers, 4
Coefficient of friction, 321, 383, 385
journal bearings, 397–402
worm gear, 488
Coil deflection, 573
Cold-driven rivet, 626
Collar friction, 601, 602
Column; see also Buckling design of members
buckling, 204–207
classification, 207–212
critical stress, 207–212
slenderness ratio, 207
Combined loading
design—fluctuating loads, 303–305
maximum distortion energy theory, 255–256
maximum shear stress theory, 253–255
shafts, 347–350
Compatibility condition, 613, 656
Completely reversed stress, 283, 293
Compression couplings, 370
Compression springs, see Helical compression springs
Computational tools for design problems, 10
Computer-aided design (CAD) software, 10
Conditions of equilibrium, 15–16
Cone clutch, 532–534
Coned-disk springs, 584, 585
Conformability, 405, 406
Conical-helical compression spring, 558
Conical spring, 558
Conjugate action, 429, 430, 435
Connections, 593–653
adhesive bonding, 641–642
brazing, 640
fasteners, 593
power screws (see Power screws)
rivets (see Riveted connections)
soldering, 640
threaded fasteners, 593–596, 606, 607
welding, 633–637 (see also Welding)
Conrad-type bearing, 408
Constant-force (Negator) spring, 584
Contact angle, 508
Contact ratio, 434–436, 470
Contact stress, 455
Coordinate transformation matrix, 691, 701Corrosion
fatigue, 287, 319, 320, 339
stress, 67, 319
wear, 319–321
Coulomb, C A., 253
Coulomb-Mohr theory, 264–266
Coupling, 369–371
Cardan, 371
clamped rigid, 369
compression, 370
flanged rigid, 369–370
flexible, 371
Hooke’s, 371
keyed, 369–370
rigid, 369–371
Rzeppa, 371, 372
square-jawed, 371
Crack deformation types, 246
Critical frequency, 359, 360
Critical speed of shafts, 359–364
Critical stresses, 574
Crossed helical gears, 467
Crowned pulleys, 504–505
Cumulative fatigue damage, 305–307
Curved beam formula, 673–677
Cyclic loading, helical compression spring, 571–572
Cyclic stress-time relations, 293
Cylinders
central hole, with, 670
compound, 661–664
filament-wound, 678
thermal stress, 670–671
thick-walled, under pressure, 657–661
thin-walled, 671
Cylindrical pressure vessels
fluctuating load, 298–299
Cylindrical roller bearings, 410, 411
Cylindrical rubber mounts, 587
D
da Vinci, Leonardo, 425
Dedendum, 427, 428
Deep-groove (Conrad-type) bearing, 408
Deflection and impact, 149–173
Belleville springs, 584–586
bolt cutter deflection analysis, 159–160
freely falling weight, 165–166
horizontally moving weight, 166–167impact loading, 164–165
longitudinal/bending impact, 165–171
springs, 557–558
Deformed beam element, 698
Design, 3; see also Introduction to design
analysis, 7–9
decisions, 4
function, 3
and performance requirements, 6
power capacity, 522
and safety codes, 12–13
stress value, 447, 456
Design process, 5–7
analysis, 7
definition of the problem, 6
identification of need, 5–6
presentation, 7
synthesis, 6
testing, 6
Diametral pitch, 427, 431–433, 469, 482
Differential band brake, 535–536
Dip brazing, 640
Direct equilibrium approach, 689
Discontinuity stresses, 677–678
Disk brake, 530–532
Disk clutch, 526–528
Disk flywheels, 664–670
Displacement
disk flywheel, 665–668
statically indeterminate beam, 698–700
triangular element, 706–708
truss—Castigliano’s theorem, 197–198
two-dimensional problem, 705–706
Double-enveloping wormset, 489, 490
Double-Hooke joint, 371–372
Double lap joint, 642
Double-row radial bearing, 408
Double shear joint, 628
Drop-feed oiler, 403
Drum clutch, 526
Drums, 524
DT mounting arrangement, see Tandem (DT) mounting arrangement
Dubois, G B., 397
Duplex hydraulic conduit, 663–664
Duplex mounting, 420
Dynamic loading, tension joints, 621–623
EEccentrically loaded columns, 214–222
Eccentric loading, shear of rivets/bolts, 630–633
Effective diameters, 626
Effective slenderness ratio, 207
Efficiency, 23
ball screw, 605–606
joint, 628–629
power screw, 602–605
screw, 602
toothed belt drive, 506
worm gear, 494
Elasticity
defined, 41
matrix, 705, 709
two-dimensional elements, 704–706
Elastic stress-strain relation, 50
Elastohyrodynamic lubrication, 385
Element strain-nodal displacement matrix, 706
Endurance limit defined, 283
estimating, 285–286
fatigue loading, 569
fatigue stress concentration factor, 290–292
modifying factors, 286–287
reliability factor, 289
size factor, 289
surface finish factor, 288–289
temperature factor, 290
Endurance strength, 283
Energy methods, 165, 185–241
buckling of columns, 204–207
Castigliano’s first theorem, 201–202
stiffness matrix, 708–709
virtual work/potential energy, 201–202
work-energy method, 192–193
Engineering design, 3–4
Epicyclic trains, 438
Equivalent radial load, 413–415
Equivalent shock loading, 414–415
Expanding drum clutch, 526
Expected V belt life, 514
Extension springs, 572–576
External long-shoe drum brakes, 539–542
External self-aligning bearing, 408
Extruding, 461
F
Face-to-face (DF) mounting arrangements, 420
Face width, 428, 432Factor of safety
fracture mechanics, 247
joint—dynamic loading, 621–626
joint—static loading, 612–613
reliability, 266–267
welding, 635
Fading, 544
Failure criteria; see also Fatigue
Coulomb-Mohr theory, 264–266
fracture toughness, 247–252
maximum distortion energy theory, 255–257
maximum principal stress theory, 261–263
maximum shear stress theory, 253–255
Mohr’s theory, 263–264
octahedral shear stress theory, 257–261
stress-intensity factors, 246–247
yield and fracture criteria, 252–253
yielding theories, compared, 261
Failure of components by yielding, fracture, 317
Fastener; see also Connections
preloaded—fatigue loading, 623–626
preloaded—static loading, 612–621
threaded, 623
Fatigue, 279–315
axial fatigue strength, 284
bending fatigue strength, 283–284
cumulative fatigue damage, 305–307
endurance limit (see Endurance limit)
fatigue strength, 283–285
fatigue tests, 282–283
fracture mechanics approach, 307–309
high-/low-cycle, 285
regimes, 285
reversed bending test, 282–283
simple fluctuating loads, 296–303
S-N diagrams, 283–285
stress concentration factor, 290–292
surface fatigue failure (wear), 336–338
theories of fatigue failure, 294
torsional fatigue strength, 284–285
welding, 633–637
zone, 280
Fatigue failure, 279–281
diagram, 294
theories, 294
Fatigue limit; see also Endurance limit
butt welding, 636–637
preloaded fasteners, 623–626Filament-wrapped cylindrical pressure vessel, 678
Fillet weld, 634, 635
Film pressure, 402
Fine thread, 595
Finite element analysis (FEA), 687–721
beam/frame elements, 697–703
case studies (see Case studies, finite element analysis)
formulation of finite element method, 693–697
plane stress case studies, 709–712
programs, 10
statically indeterminate beam, 770
stiffness matrix for axial elements, 708–709
triangular element, 706–709
two-dimensional elements, 704–706
Finite element block diagram, 694
Fitted bearing, 383
Flange bearings, 411
Flanged rigid couplings, 369–371
Flat belt drive, 507, 512
Flat belts, 504
Flat key, 365
Flat spring, 553, 559, 579
Flexible coupling–keyless fits (AGMA 9003-A91), 359
Flexible couplings, 371
Flexible shaft, 345
Fluctuating loads, 296–303
combined, 303–305
simple, 296–303
Fluctuating stress, 292–294
Fluid film, 384, 385
Fluid lubrication, 384
Flywheel, 664–670
Flywheel breaking—torque requirement 669–670
Force-displacement relations, 692
Fracture, 42, 245
mechanics approach to fatigue, 307–309
toughness, 247–252
Free-body diagram, 17–19
Fretting, 321, 339
Friction
coefficient (see Coefficient of friction)
power, 393–394
torque, 392–393
Full-journal bearing, 382
Fully reversed stress, 283
Furnace brazing, 640
Fusion process, 633G
Gas bearings, 383
Gasketed joints, 616
Gasket pressure, 616
Gas lubricants, 382
Gas-metal arc welding (GMAW), 634
Gauss distribution, 267
Gauss, K.F., 267
Gear force analysis, 441–442
Gear manufacturing, 460–461
Gear materials, 459–460
Gears, 425
bevel, 467–501
helical, 467–501 (see also Helical gears)
spur, 425–466 (see also Spur gears)
train, 436–439
value, 437
worm, 467–501
Gearset, 429, 437
General spandrel, 760
Gerber criterion, 294–295
Gerber (parabolic) line, 294–295
Gib-head key, 364, 365
GMAW, see Gas metal arc welding
Goodman criteria helical springs, 570
Goodman line, 295, 298, 299
Griffith, A.A., 246
H
Hardness, 63–66
H b, see Brinell hardness number
Heat balance, 404–405
Heat dissipation capacity, 493, 494
Heat-treated steel gears, 460
Heat treatment, 67–68
Helical compression springs
allowable, 561–562
aspect ratio, 566–568
buckling, 565–566
compression spring surge, 570–571
cyclic loading, 571–572
deflection, 563–564
diagram, 557
fatigue loading, 569–572
Goodman criteria helical springs, 570
plain ends, 562, 563
plain-ground ends, 563
squared ends, 563squared-ground ends, 562–563
static loading, 564–565
Helical extension springs, 572–576
Helical gears, 467–481
advantages/disadvantages, 468
AGMA equations, 474–475
bending/wear strengths, 473–475
Buckingham equation, 473–474
contact ratios, 470–471
geometric quantities, 471–472
geometry, 468–472
Lewis equation, 473
thrust load, 473
transmitted load, 473
virtual number of teeth, 470
Helical tension spring, 555
Helical torsion springs, 576–577
Helix angle, 593
Hencky, H., 255
Herringbone gear, 467, 468, 473
Hertz contact stresses, 327, 453
Hertz, H., 327
Hertz problem, 327
Hexagonal bolt/nut, 595
High-cycle fatigue, 285
Hobbing, 460
Holzer’s method, 360
Honing, 461
Hooke’s coupling, 371–372
Hot-driven rivet, 626
Hot working, 66, 67
Hueber, M T, 255
H
V, see Vickers hardness number
Hydrodynamic lubrication theory, 394–397
Hydrostatic lubrication, 385–386
Hydrostatic thrust bearing, 385–386
Hypoid gears, 481
I
Idler, 510
Idler gears, 437
Impact
bending, 165
factor, 166, 169, 171
longitudinal, 165
torsional, 172–174
Impact load(ing), 60, 164–165
beam, 168–170energy method, 165
shaft, 173–174
Improving hardness/strength, 66–69
Indentation hardness, 64
Induction brazing, 640
Inflection points, 205, 206
Initial tensile force, 611
Initial tension, 507, 510, 573
Injection molding, 461
Interference, 269, 359, 434–436
Interference fits, 358–359
Internal expanding centrifugal-acting drum clutch, 526
Internal long-shoe drum brake, 543–544
Introduction to design, 3–39
case studies (see Case studies)
design analysis, 7–9
design process, 5–7
factor of safety, 11–13
power, 21–25
work and energy, 21–25
Inverted-tooth chain, 523–524
Involute gear teeth, 368, 431
Involute splines, 367, 368
Irwin, G R., 246
ISO (metric) screw threads, 594, 597
Izod impact test, 58
J
Johnson formula, 209–211
Johnson–Kendall–Roberts (JKR) Theory, 328
Joints
bolted-loaded in shear, 626–628
butt, 628
constant, 613, 616, 618
double lap, 642
efficiency of, 629
factors of safety, 614–615
gasketed, 616
lap, 628, 642
rivets (see Riveted connections)
scarf, 642
stiffness factor, 613, 616–618
tension-dynamic loading, 621–623
tension-static loading, 612–615
types, 628–630
Journal, 382
diameter, 399
length, 399Journal bearings, 381–407; see also Lubrication
alloys, 405–406
bearing load, 397
clearance, 398
design, 397–402
heat balance, 404–405
length-to-diameter ratio, 398
long bearings, 395–397
lubricants, 397
lubricant supply, 402–404
materials, 405–407
Petroff’s bearing equation, 392–394
rolling-element bearings, compared, 407
short bearings, 397
types, 382–383
K
Keyed couplings, 369–370
Keyways, 364, 366
Kinematic viscosity, 389
Kinetic energy, 21, 22
of rotation, 545
of translation, 544
LL
10, 416
Laminar flow, 387, 388
Lap joint, 628, 634, 642
Lapping, 461
Lead, 489, 593
Lead angle, 490, 492, 593
Leaf spring, 579–583
Left-hand (LH) helical gears, 467
Lewis equation
bevel gears, 486
helical gears, 473
spur gears, 442–446
Lewis form factor, 443–444
Lewis, W., 442
Life adjustment factors, 416
Lightly loaded journal bearing, 393
Linear actuator screw, 596
Linear cumulative damage rule, 305
Line of action, 430
Linings, 524
Liquid lubricants, 381–382
Load
actual, 629bending, 416, 447
bending, 486
dynamic, 15, 441
equivalent radial, 413–415
Euler buckling, 205, 566
impact, 60, 164–165
maximum dynamic, 166
proof, 607, 611
safety factor, 615
shock, 60, 164
spring, 574
tangential, 443, 444, 484, 487
thrust, 410, 467–469, 473
wear, 454, 486
Lock nuts, 607
Lock washers, 607
Long bearings, 395–397
Long-shoe drum brakes, 538–544
Low-cycle fatigue, 285
Lubricant, 381–382
Lubricant viscosity, 387–392
Lubrication, 381–420; see also Journal bearings; Rolling-element bearings
boundary, 385
elastohydrodynamics, 385
hydrodynamic lubrication theory, 394–397
hydrodynamics, 385
hydrostatic, 385–387
mixed, 384
Reynolds’s equation, 395–397
M
Machine, 4, 17
design, 4
screw, 606
Margin of safety, 12, 268
Materials, 41–82
brakes and clutches, 524–526
brittle-ductile transition, 60–62
bulk modulus, 51
classification, 41
composites, 74–75
creep, 56–57
dilatation, 51
fasteners, 607–608
improving hardness/strength, 66–69
journal bearings, 405–407
modulus of resilience, 57–58
modulus of toughness, 58–60properties, 41–42
shafts, 345–346
spring, 559–562
spur gears, 459–460
static strength, 42–47 (see also Strength-stress diagrams)
welding, 634
Maximum contact pressure, 328, 330–333
Maxwell, J.C., 255
Mean stress, 293–294
Mean stress-alternating stress relations, 294
Mechanical design, 4
Mechanical design projects, 19; see also Case studies
Mechanical forming and hardening, 66
Mechanical prestressing, 337
Median life, 412
Membrane stresses, 88
Metal inert gas arc welding, 634
Metallic arc welding, 633
Method of sections, 16, 197
Midsurface, 224–225
Mineral oils, 382
Miner’s rule, 305, 306
Minimum film thickness, 384, 398, 400, 405
Minimum life, 412
Mises criterion, 257
Mises–Hencky criterion, 257
Miter gears, 481
Mixed lubrication, 384
Mode I crack deformation, 246
Mode II crack deformation, 246
Mode III crack deformation, 246
Modified endurance limit, 286–287
Modified Goodman criterion, 294, 295, 570
Modified Goodman line, 295, 299
Modified Rayleigh’s method, 360
Modified square thread, 596
Module, 427
Modulus of volumetric expansion, 51
Mohr envelope, 263
Mohr’s circle, 110
Coulomb-Mohr theory, 264–265
Mohr’s theory of failure, 263–264
triaxial stress, 111
Mohr theory of failure, 263–264
Molded linings, 525
Moment-area theorems, 161–162
Mounting correction factor, 449
Multileaf spring, 580–583Multiple-disk clutches, 526–527
Multiple-threaded screw, 594
Multiple V-belt drive, 505
N
Natural frequency, 571
Needle roller bearings, 410
Negator spring, 584
Newtonian fluids, 388
Newton’s law of flow, 395
Newton’s law of viscous flow, 388
Nodal displacement matrix, 707
Nodular cast iron gears, 460
Non-Newtonian fluids, 388
Normal circular pitch, 469
Normal distributions, 267–268
Notch sensitivity, 290
O
Ocvirk, F.W., 397
Ocvirk’s short bearing
approximation, 397
Offset yield strength, 46
Oil, 381
bath, 402–403
distribution, 403–404
Oil-tempered wire, 560–562
Optimum design, 4
Optimum helix angle of filament, 679
Overhauling screw, 602
Overload correction factor, 448
P
Parallel plane, 224
Paris equation, 307, 308
Paris, P.C., 307
Pedestal bearings, 403
Petroff, N., 392
Petroff’s equation, 392–394
Phases of design, 5–7
Pillow-block bearings, 403, 411
Pinion, 425, 426
Pitch, 593, 628
angles, 482
circles, 425
diameter, 425, 438
line velocity, 429, 451, 474
point, 429, 430, 484radius, 427, 507
Pitting, 321, 336, 337, 452
Planetary gear trains, 438–439
Plastics, 73–74, 407, 559, 746, 779
gears, 460
range, 45, 46
Plate
Bending of thin, 225
buckling of rectangular, 224–226
midsurface, 224
Population, 268
Power screws, 593–653; see also Connections
axial stress, 609
bearing, 610
buckling stress, 611
combined torsion/axial, 610
direct shear stress, 610–611
efficiency, 605
friction coefficients, 601
mechanics, 596–601
overhauling, 602–605
self-locking, 605
thread angle—normal plane, 601
thread forms, 593–596
torque to lift load, 600–601
torque to lower load, 601
torsional shear stress, 609–610
Preload, 568, 611
Preloaded fasteners
fatigue loading, 623–626
static loading, 612–621
Presetting, 568
Press fit, 321
Pressure angle, 431–432
Pressure-fed lubrication systems, 403
Pressure line, 430, 431, 434, 440
Pressure vessels
cylindrical (see Cylindrical pressure vessels)
filament-wound, 678–679
thin-walled, 88–89
Principal strains—Mohr’s circle, 120
Principal stress
Mohr’s circle, 132–133
three dimensions, 128–130
Principle of superposition, 28, 50, 149, 187
Principle of virtual work
defined, 201
deflection of cantilevered beam, 203–204Process of design, 5–7; see also Design process
Proof load, 607, 611
Proof strength, 607, 614
Pulsating stress, 293
Q
Quenching, 67
R
Raceways, 408, 411
Rack, 426, 427
Radial displacement, 655, 657
Radial interference, 662
Radius of curvature, 245
Radius of gyration, 173, 206, 208
Raimondi, A.A., 398
Rankine, W.J.M., 261
Rating life L10, 412
Rational design procedure, 8
Rayleigh equation, 359, 360
R
B, 64
R
C, 64
Recrystallization temperature, 66
Redistribution of stress-flat bar of mild steel, 125
Reliability, 12, 245–278
chart, 269
examples, 270
factor of safety, 266–267
margin of safety, 268–271
normal distributions, 267–268
rolling-element bearings, 407
safety index, 268
Repeating section, 628
Resistance brazing, 640
Resistance welding, 634
Reversed bending test, 282–283
Reynolds, O., 395
Reynolds’s equation for one-dimensional flow, 396
Reynolds’s equation of hydrodynamic lubrication, 395–397
Right-hand (RH) helical gears, 467
Rigid coupling, 369–370
Rim clutch, 526
Ring-oiled bearing, 403
Riveted connections
capacity, 627–628
failure, 627
loaded in shear, 626–628
shear stress—eccentric loading, 632–633strength analysis—multiple-riveted lap joint, 629–630
Rockwell hardness test, 64
Roller bearings, 410
Roller chains, 518–523
Rolling-element bearings, 407–421; see also Journal bearings
ball bearings, 408–410, 419
bearing life, 411–413
dimensions/basic load ratings, 411–413
equivalent radial load, 413–415
equivalent shock load, 414–415
journal bearings, contrasted, 407
materials/lubricants, 419–420
mounting/closure, 420–421
reliability, 416–419
roller bearings, 410
selection of, 415–419
special bearings, 410–411
Rotating-beam fatigue testing machine, 282–283
Round belts, 504
drives, 507–511
Round key, 365
R.R, Moore high-speed rotating-beam machine, 282
Rubber, 407
mount, 586
spring, 586–587
Rzeppa coupling, 371
S
Safe stress line, 297–298, 570
Safety factor, 11–12
Safety index, 268
Saint-Venant’s Principle, 8
Saybolt universal seconds, 389–390
Saybolt universal viscometer, 389
Saybolt universal viscosity (SUV), 389
Scarf joint, 642
Screw; see also Connections
ball, 605–606
cap, 606
machine, 606
power (see Power screws)
stresses, 609–611
translation, 596
winch crane hook, 742–744
Screw efficiency, 602–603
Sealed bearing, 421
Secant formula, 214–218
Self-aligning bearing, 408–409Self-contained bearings, 403, 404
Self-de-energized brake, 538, 540
Self-energized brake, 537–538, 540
Self-locking brake
band brake, 534–535
long-shoe drum brake, 538–539
short-shoe drum brake, 536–537
Self-locking screw, 602
Self-tightening drive, 510
Service factors, 415, 515
Setscrews, 364
Shafts, 345–372
angle, 491
axially positioning of hubs, 365–367
bending and torsion, 348–350
bending/torsion/axial loads, 348
collars, 364–365
couplings, 369–371
critical speed, 359–364
customary types, 345
deflections, 355
flexible, 345
fluctuating/shock loads, 353–358
interference fits, 358–359
keys, 364
materials, 345–346
mounting parts, 364–366
pins, 364
rings, 364–365
screws, 364
splines, 367–369
steady torsion, 346–347
steady-state operation, 354–355
stress in keys, 366–367
stress-concentration factors, 783–788
universal joints, 371–372
Shank, 593, 626
Shaving, 461
Shielded metal arc welding (SMAW), 633–634
Shock loading, 149, 414–415
Short-shoe drum brake, 536–538
Shrink fit, 339, 358, 641, 661–664
Shrinking allowance, 662
Sign convention
beams, 94
curvature, 333
Mohr’s circle, 111
shear force, 17stress component, 25–27
Winkler’s formula, 674
Silent chain, 523–524
Single-shear joint, 628
Single thread, 593
Single-enveloping wormset, 489
Single-row roller bearings, 410
Sintered materials, 407
Sintered metal pads, 525
Sintered metal-ceramic friction pads, 525
Sintering, 461
Sleeve bearings, see Journal bearings
Sliding bearings, see Journal bearings
S-N diagrams, see Stress-life diagrams
Snap rings, 364–366
Snap-through buckling, 586
Society of Automotive Engineers (SAE)
criterion, 295
line, 295
number of oil, 390
Soderberg criterion, 296–297, 303, 355
Soldering, 640–642
Solid deflection, 563, 564
Solid lubricants, 382
Sommerfeld number, 398
Spalling, 337
Special bearings, 410–411
Specific Johnson formulas, 210–211
Speed ratio, 430, 437, 517
Spherical pressure vessel, 89, 677
Spherical roller bearings, 410
Spherical shell, 671
Spiral bevel gears, 481, 487
Spiral torsion spring, 578–579
Splash system of lubrication, 402–403
Splines, 367–369
Split-tubular spring pin, 364
Spring constant, 150, 165, 558, 617
Spring index, 555, 559, 570
Spring load, 574
Spring rate, 150
Spring scale, 558
Springs, 553–592
Belleville, 584–586
compression spring (see Helical compression springs)
constant-force, 584
extension, 572–576
fatigue, 568–569leaf, 579–583
materials, 559–562
rubber, 586–587
spring rate, 558–559
stresses, 556–557
surge, 570–571
tension, 555–556
torsion, 576–579
torsion bars, 553–555
volute, 583
Spur gears, 425–466
basic law of gearing, 429–430
bending strength of gear tooth (AGMA method), 446–452
contact ratio, 434–436
finishing processes, 461
forming gear teeth, 460–461
gear trains, 436–438
geometry/nomenclature, 425–429
interference, 434–436
involute tooth form, 430
Lewis formula, 442–446
manufacturing, 460–461
materials, 459–460
planetary gear trains, 438–439
standard gear teeth, 431–434
stress concentration, 444–445
transmitted load, 439–442
wear strength of gear tooth (AGMA method), 455–459
wear strength of gear tooth (Buckingham formula), 452–455
Square thread, 596, 601
Square tooth splines, 367
Square-jawed coupling, 371
Stamping, 461
Standard deviation, 267–270
Standard normal distribution, 268
Standard thread forms, 593–596
Standard weight pipe dimensions/properties, 761
Static loading
preloaded fasteners, 623–626
tension joints, 612–615
Steel bolts, 608
Steel numbering systems, 71–72
Stiffness, 149, 617
constants, 616
matrix, 689
Straight bevel gear, 481–483
Straight cylindrical roller bearings, 414
Straight round pin, 364–365Straight shaft of constant diameter, 346
Straight-line Mohr’s envelopes, 264
Straight-sided splines, 368
Strain displacement relations, 134–135
axisymmetric problems, 656
Strain energy, 187–192
Strain matrix, 704, 708
Strength
fatigue, 283–285
improving, 66–69
static, 42–47 (see also Strength-stress diagrams)
structural steel, 77
temperature, 58
Strength (or stress)-strain diagrams
AISI type 304 stainless steel in tension, 56
annealed steel, 67
brittle materials, 46
compression, 46–47
ductile materials, 43–46
gray cast iron in tension, 46, 47
modulus of resilience, 57–58
modulus of toughness, 58
quenched steel, 67
structural steel in tension, 44
tempered steel, 67
Stress; see also Stress and strain
allowable bending, 446–447
allowable contact, 455, 456
alternating, 293–294
Belleville springs, 584–586
buckling, 611
coils, 574
completely reversed, 282, 283, 293
compressive residual, 337, 339, 568
contact, 455–456
critical, 574
curved beams, 671–673
direct shear, 85–86, 638
discontinuity, 677–678
disk flywheel, 664–666
equivalent normal, 296
equivalent shear, 296
fluctuating, 292–294
helical springs, 557
hoop, 678
keys, 366–367
longitudinal, 658
maximum bending, 574maximum compressive bending, 577
maximum torsional, 574
membrane, 88, 89, 677
principal (see Principal stress)
pulsating, 293
repeated, 293
resultant shear, 638
screws, 609–611
sign convention, 26–27
thick-walled cylinders, 657–661
torsional shear, 609–610
total shear, 556
von Mises, 256
Stress and strain, 83–148
combined stresses, 114–115
components, 26
contact stress distributions, 327–328
direct shear stress, 85–86
fatigue loading, 125
invariants, 111
maximum stress in general contact, 333–336
Mohr’s circle (see Mohr’s circle)
plane strain, 118–121
plane stress, 107–113
temperature, 55–57
tensor, 26
thermal stress-strain relations, 55
transformation, 108
Stress-concentration factors, 123–125, 783–788
Stress-intensity factors, 246, 247
Stress-life (S-N) diagrams, 283–285
Structural stiffness method, 693
Stud, 606, 607
Surface compressive stresses, 337
Surface endurance limit, 454
Surface fatigue failure (wear), 336–338
Surface stress, 488
Surging, 571
SUV, see Saybolt universal viscosity
Synchronous belt, 505
Synthetic lubricants, 382
TT
andem (DT) mounting arrangement, 420
Tangential force, 439–440
Tangential load, 484
transmitted, 440
Tapered roller bearings, 410Tapered round pin, 364, 365
Tapered thrust roller bearings, 410
Temperature
lubricant viscosity, 387–388
recrystallization, 66
Tensile link, safety factor, 299–300
Tensile stress area, 595, 607, 614
Tension joints
dynamic loading, 621–626
static loading, 612–615
Tension spring, 555, 556
Theorem of virtual work, 202
Theoretical stress-concentration factors, see Stress-concentration factors
Thermal stressing, 84, 337
Thick-walled cylinders, 89, 655
under pressure, 657–661
Thin-walled cylinder, 655, 671
Thin-walled spherical shell, 671
Thread angle, 594, 600
Threaded fasteners, 593–595, 606–608; see also Bolt Screw
Thread forms, 593–596
Thread friction, 600
360° journal bearing, 382
Through-hardened gears, 460
Through hardening, 68
Thrust bearing, 385, 408, 597, 601
Thrust collar, 597, 601
Thrust load, 467–469, 473
Timing belt, 505–506, 509
drive, 517
Toothed belt, 505–506, 509
Torch brazing, 640
Torque capacity
band brake, 534–536
cone clutch, 532
disk brake, 530–532
disk clutch, 527
long-shoe drum brake, 538
multiple-disk clutch, 529
short-shoe drum brake, 536–537
Torsion, 89
springs, 576–579
Torsional fatigue failures, 281
Torsional fatigue strength, 284–285
Torsional impact, 172–174
Torsional shear loading, 587
Torsional shear stress, 556, 609–610
Total shear stress, 556Transformation equations
for plane stress, 110
three-dimensional stress, 128, 131
Translation screw, 596
Transmitted load, 439–442, 473
Transverse circular pitch, 469
Transverse contact ratio, 471
Transverse pitch, 628
Transverse pressure angle, 469
Tredgold’s approximation, 484
Tresca, H.E., 253
Tresca yield criterion, 253
Triangular element, 706–709
Tribology; see also Bearings; Journal bearings; Lubrication; Rolling-element bearings
Truss, analysis/design, 693–697
Turbulent, 387
Twisting-off strength of bolts, 271
Two-dimensional Reynolds’s equation, 397
U
UNC coarse threads, 595
Undercut tooth, 435
UNF fine threads, 595
Unified and ISO thread forms, 595
Unified numbering system (UNS), 72
Unified screw threads, 596
Uniform pressure
cone clutch, 533
disk clutch, 529–530
Uniform wear
cone clutch, 532–533
disk clutch, 528–529
Universal joint, 371–372
VV
ariable-pitch pulleys, 504
V-belt, 510, 513
drive, 513–517
tensions, 515
Velocity profile, 388, 394, 396
Vickers hardness number (Hv), 64
Vickers hardness test, 64
Virtual number of teeth
bevel gears, 484
helical gears, 470
Virtual work, 201
Viscosity, 389
index, 391Volute spring, 583
von Mises-Hencky theory, 255
von Mises, R, 255
von Mises stress, 256
von Mises theory, 255
WW
ahl factor, 556
Wahl formula, 556
Washers, 584
Wave method, 165
Wear, 322–323, 452
equation, 323, 492
load, 486
load factor, 454, 474
Weibull distribution, 267, 416
Weibull, W., 267
Weld(ing), 633–640
AWS numbering system, 634
butt-fatigue loading, 636–637
centroid, 639
eccentric loading, 637–640
factor of safety, 635
GMAW, 634
materials, 634
moments of inertia, 639–640
resistance, 634
SMAW, 633
spot, 634
strength of joints, 634–635
stress concentration/fatigue, 635–637
torsion, 637–638
Weldment, 633
Whole depth, 428, 432
Wick-feed oiler, 403
Wind turbine, 481
Winkler, E., 673
Woodruff key, 364–365
Working depth, 428, 432
Worm gear coefficient of friction, 495
Worm gear efficiency, 494–495
Worm gear geometry, 488 – 491
Worm gear screw jack, 599
Worm gearset, 488 – 496
AGMA equations, 493
bending/wear strengths, 492 – 493
Buckingham equation, 492
coefficient of friction, 495efficiency, 494–495
geometric quantities, 491–492
heat dissipation, capacity, 493
Lewis equation, 492–493
single-/double-enveloping type, 488–489
thermal capacity, 493–496
YY
ielding theories, 261
Yield point, 45, 125, 208, 297
Yield strength, 45, 46
Young’s modulus, 47
Z
Zero clearance, 383
Zerol bevel gears, 481


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Mechanical Engineering Design
رابط مباشر لتنزيل كتاب Mechanical Engineering Design
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Mechanical Engineering Design
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Mechanical Engineering Design 8 Ed
» كتاب Shigley’s Mechanical Engineering Design - Ninth Edition
» كتاب Shigley's Mechanical Engineering Design 9th Edition
» كتاب Mathematical Concepts for Mechanical Engineering Design
» كتاب Shigley's Mechanical Engineering Design 9th Edition

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: