كتاب AC to AC Converters Modelling, Simulation, and Real-Time Implementation Using SIMULINK
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب AC to AC Converters Modelling, Simulation, and Real-Time Implementation Using SIMULINK

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18749
التقييم : 34775
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب AC to AC Converters Modelling, Simulation, and Real-Time Implementation Using SIMULINK  Empty
مُساهمةموضوع: كتاب AC to AC Converters Modelling, Simulation, and Real-Time Implementation Using SIMULINK    كتاب AC to AC Converters Modelling, Simulation, and Real-Time Implementation Using SIMULINK  Emptyالثلاثاء 06 أبريل 2021, 2:34 am

أخوانى فى الله
أحضرت لكم كتاب
AC to AC Converters Modelling, Simulation, and Real-Time Implementation Using SIMULINK
Narayanaswamy P. R. Iyer
Electronics Consultant
Sydney, NSW, Australia

كتاب AC to AC Converters Modelling, Simulation, and Real-Time Implementation Using SIMULINK  A_c_t_11
و المحتوى كما يلي :


Contents
Preface . xiii
Author xvii
1. Introduction .1
1.1 Background 1
1.2 Objectives and Novelty 6
1.3 Research Methodology .8
1.4 Book Outline 8
References . 11
2. Carrier-Based Modulation Algorithms for Matrix Converters . 15
2.1 Introduction . 15
2.2 Model of Three-Phase AC to Three-Phase AC Matrix Converter . 15
2.3 Venturini and Optimum Venturini Modulation Algorithms 18
2.4 Model Development . 21
2.4.1 Model of a Matrix Converter Using Venturini First
Method 21
2.4.2 Simulation Results .23
2.4.3 Model of a Matrix Converter Using Venturini
Second Method .23
2.4.4 Simulation Results .27
2.4.5 Model of a Matrix Converter Using the Optimum
Venturini Modulation Algorithm 31
2.4.6 Simulation Results . 31
2.5 Advanced Modulation Algorithm 31
2.5.1 Model Development 45
2.5.2 Model of a Matrix Converter Using the Advanced
Modulation Algorithm 45
2.5.3 Simulation Results .47
2.6 Case Study: Speed Control and Brake by Plugging of
Three-Phase Induction Motor Fed by Matrix Converter .53
2.6.1 Simulation Results .55
2.6.2 Real-Time Implementation .57
2.7 Discussion of Results 57
2.8 Conclusions 60
References .60
3. Multilevel Matrix Converter 63
3.1 Introduction .63viii Contents
3.2 Multilevel Matrix Converter with Three Flying Capacitors
per Output Phase 63
3.3 Control of Multilevel Matrix Converter with Three Flying
Capacitors per Output Phase by the Venturini Method . 70
3.4 Output Filter 71
3.5 Model Development .71
3.5.1 Simulation Results . 74
3.6 Conclusions 79
References .80
4. Direct Space Vector Modulation of Three-Phase Matrix
Converter 81
4.1 Introduction . 81
4.2 Direct Space Vector Modulation Algorithm 82
4.3 Model of Three-Phase Asymmetrical Space Vector
Modulated Matrix Converter 88
4.3.1 Duty-Cycle Sequence and Sector Switch Function
Generator .89
4.3.2 Output Voltage and Input Current Sector Calculator 91
4.3.3 Output Voltage and Input Current Reference Angle
Calculator 95
4.3.4 Gate Pulse Timing Calculator 95
4.3.5 Gate Pulse Generator .97
4.4 Simulation Results 98
4.5 Model of Direct Symmetrical Space Vector Modulated
Three-Phase Matrix Converter 99
4.5.1 Duty-Cycle Sequence and Sector Switch Function
Generator . 102
4.5.2 Output Voltage and Input Current Sector Calculator 102
4.5.3 Output Voltage and Input Current Reference Angle
Calculator 105
4.5.4 Gate Pulse Timing Calculator 106
4.5.5 Gate Pulse Generator . 107
4.6 Simulation Results 109
4.7 Discussion of Results 111
4.8 Conclusions 112
References . 112
5. Indirect Space Vector Modulation of Three-Phase Matrix
Converter 115
5.1 Introduction . 115
5.2 Principle of Indirect Space Vector Modulation . 115
5.3 Indirect Space Vector Modulation Algorithm 118
5.3.1 Voltage Source Inverter Output Voltage SVM . 121Contents ix
5.3.2 Voltage Source Rectifier Input Current SVM .125
5.3.3 Matrix Converter Output Voltage and Input
Current SVM . 127
5.4 Model of Indirect Space-Vector-Modulated Three-Phase
Matrix Converter . 135
5.4.1 Duty-Cycle Sequence and Sector Switch Function
Generator . 135
5.4.2 Output Voltage and Input Current Sector Calculator 138
5.4.3 Output Voltage and Input Current Reference Angle
Calculator 138
5.4.4 Gate Pulse Timing Calculator 138
5.4.5 Gate Pulse Generator . 140
5.5 Simulation Results 143
5.6 Discussion of Results 143
5.7 Conclusions 146
References . 146
6. Programmable AC to DC Rectifier Using Matrix
Converter Topology 149
6.1 Introduction . 149
6.2 Output Voltage Amplitude Limit of Direct AC to AC
Converters 150
6.3 Principle of Dual Programmable AC to DC Rectifier 152
6.4 Model of Dual Programmable AC to DC Rectifier 154
6.4.1 Simulation Results . 158
6.5 Principle of Single Programmable AC to DC Rectifier 158
6.6 Model of Single Programmable AC to DC Rectifier 163
6.6.1 Simulation Results . 166
6.7 Case Study: Speed Control and Brake by Plugging of
Separately Excited DC Motor Using Single Programmable
AC to DC Rectifier . 166
6.7.1 Simulation Results . 166
6.8 Case Study: Variable-Frequency Variable-Voltage Pure
Sine-Wave AC Power Supply . 169
6.8.1 Simulation Results . 170
6.9 Case Study: Speed Control and Brake by Plugging of Two
Separately Excited DC Motors Using Dual Programmable
AC to DC Rectifier . 172
6.9.1 Simulation Results . 179
6.10 Real-Time Implementation . 179
6.11 Discussion of Results 182
6.12 Conclusions 183
References . 183x Contents
7. Delta-Sigma Modulation of Three-Phase Matrix Converters . 185
7.1 Introduction . 185
7.2 Review of Matrix Converter Gate Pulse Generation . 185
7.2.1 Delta-Sigma PWM Technique 186
7.3 Delta-Sigma Modulator Interface . 187
7.4 Venturini Model of Three-Phase Matrix Converter Using
Delta-Sigma Modulation 188
7.4.1 Simulation Results . 190
7.5 Case Study: Three-Phase Delta-Sigma-Modulated Matrix
Converter Fed Induction Motor Drive . 192
7.6 Discussion of Results 192
7.7 Conclusions 194
References . 195
8. Single-Phase AC to Three-Phase AC Matrix Converter . 197
8.1 Introduction . 197
8.2 Analysis of Single-Phase AC to Three-Phase AC Matrix
Converter 198
8.2.1 Control of Virtual Rectifier . 198
8.2.2 Control of Virtual Inverter .200
8.2.3 Calculation of Modulation Ratio . 201
8.3 Design of Compensation Capacitor 203
8.4 Model Development .204
8.4.1 Model of Single-Phase AC to Three-Phase AC
Matrix-Converter-Fed Induction Motor Drive 205
8.4.2 Simulation Results . 207
8.5 Conclusions 208
References .208
9. A Novel Single-Phase and Three-Phase AC to Single-Phase and
Three-Phase AC Converter Using a DC Link .209
9.1 Introduction .209
9.2 Single-Phase AC to Single-Phase AC Converter Using a DC
Link .209
9.3 Model of a PWM Single-Phase AC to Single-Phase AC
Converter 211
9.3.1 Principle of Operation . 211
9.3.2 RMS Output Voltage 217
9.3.3 Simulation Results . 218
9.4 Discussion of Results 219
9.5 Three-Phase AC to Three-Phase AC Converter Using a DC
Link .220
9.6 Model of a PWM Three-Phase AC to Three-Phase AC
Converter 222
9.6.1 Simulation Results .222Contents xi
9.7 Discussion of Results 225
9.8 Conclusions 225
References .226
10. Real-Time Hardware-in-the-Loop Simulation of a Three-Phase
AC to Single-Phase AC Matrix Converter .227
10.1 Introduction .227
10.2 Model of Three-Phase AC to Single-Phase AC Matrix
Converter 227
10.3 Model Development .230
10.3.1 Model of Three-Phase AC to Single-Phase AC MC
Using the Venturini Algorithm .230
10.3.2 Simulation Results . 232
10.4 Experimental Verification Using dSPACE Hardware
Controller Board 233
10.5 Discussion of Results 237
10.6 Conclusions 237
References . 237
11. Three-Phase Z-Source Matrix Converter 239
11.1 Introduction . 239
11.2 Three-Phase Voltage-Fed Z-Source Direct Matrix Converter . 239
11.2.1 Principle of Operation and Analysis – Simple Boost
Control . 240
11.2.2 Simple Boost Control Strategy . 243
11.2.3 Model Development 245
11.2.4 Simulation Results . 249
11.2.5 Discussion of Results . 249
11.2.6 Maximum Boost Control Strategy . 249
11.2.7 Model Development 252
11.2.8 Simulation Results . 252
11.2.9 Discussion of Results . 252
11.3 Three-Phase Quasi Z-Source Indirect Matrix Converter 254
11.3.1 Model Development 257
11.3.2 Simulation Results .259
11.3.3 Discussion of Results . 262
11.4 Conclusions 262
References .263
12. A Combined PWM Sine-Wave AC to AC and AC to DC
Converter 265
12.1 Introduction .265
12.2 Single-Phase PWM AC to AC and AC to DC Converter .265
12.2.1 Model Development 266
12.2.2 Principle of Operation .268xii Contents
12.2.2.1 AC Mode 268
12.2.2.2 DC Mode 270
12.2.3 Single-Phase Sine-Wave PWM AC to AC and
AC to DC Converter . 271
12.2.4 Simulation Results . 273
12.3 Three-Phase Sine-Wave PWM AC to AC and AC to DC
Converter 273
12.3.1 Model Development 273
12.3.2 Simulation Results . 276
12.4 RMS and Average Value of a Uniform PWM Sine-Wave
AC Voltage 276
12.5 Discussion of Results 282
12.6 Conclusions 283
References .283
13. Cycloconverters, Indirect Matrix Converters and Solid-State
Transformers 285
13.1 Introduction .285
13.2 Single-Phase AC to Single-Phase AC Cycloconverters 285
13.2.1 Simulation Results .286
13.3 Three-Phase Cycloconverters 289
13.3.1 Simulation Results .290
13.4 Discussion of Results 292
13.5 Three-Phase Conventional Indirect Matrix Converter 294
13.5.1 Simulation Results . 294
13.6 Three-Phase Multilevel Indirect Matrix Converter . 297
13.6.1 Simulation Results . 298
13.7 Discussion of Results 300
13.8 Solid-State Transformer 300
13.8.1 SST Using Dual Active Bridge Topology 304
13.8.2 Simulation Results .304
13.8.3 SST Using Direct AC to AC Converter Topology 307
13.8.4 Simulation Results .308
13.9 Discussion of Results 308
13.10 Conclusions 310
References . 311
Appendix A: Matrix Converter Derivations 313
Index
Index
A
AC mode, 265, 268, 269, 283
AC power supply
dual sine wave, 170
pure sine wave, 149, 169, 182, 183
AC to DC rectifier, 149
Adders, 47
Advanced modulation algorithm, 31
gate pulse pattern, 51
input voltage, 36
line-to-line output voltage, 48, 50, 52
line-to-neutral output voltage, 47,
49, 52
load current, 50
matrix converter parameters, 45
model of, 45, 46
modulation index, 41
offset duty ratio, 42, 44
output voltage, 37, 39
phase A input current, 48, 49
program development, 52–53
simulation results, 47, 52
triangle carrier, 51
Alesina–Venturini method, 81
Asymmetrical space vector modulation
(ASVM)
rules for, 86–87
switching pattern, 88
zero configuration, 87
Average output voltage calculation,
276–282
B
Bidirectional semiconductor switches,
1, 82
development of, 1
gate pulses for, 3, 21, 107
in matrix converters, 15–16
topologies, 2
Bidirectional switches, 23, 31, 63, 71, 74,
82, 101, 107, 109, 140, 142, 154,
185, 186, 187, 188
Bipolar dual output inverter, 210, 220
Boolean logic, 8
Boost factor, 242, 257, 262
Brake by plugging, 6–9, 53, 57, 149, 166,
172, 182, 265
C
Cage IM, single-phase AC to threephase AC MC
model development, 206–207
model parameters, 204, 207
no-load test, 204–205
simulation results, 207–208
Capacitor
clamped, 63
compensation, 197, 198, 200, 203, 207
DC link, 1, 16, 81, 283, 295
flying, 63, 64, 65, 70, 71
Carrier switching, 71, 74, 135, 146, 163
Cascade, 63
CMC, see Conventional matrix converter
(CMC)
Combinational logic circuit, 187–189
Combinational logic interface, 189
Combined PWM sine-wave AC to AC
and AC to DC converter
average output voltage and RMS
calculation, 276–282
single-phase
AC mode operation, 268–269
block diagram of, 265–266
DC mode operation, 270–271
model of, 266–268, 271–272
model parameters, 273
simulation results, 273–276
three-phase
block diagram of, 273, 277
model of, 277
simulation results, 276, 279–281
Common-emitter IGBT topology, 1, 3, 15
Common-mode addition technique, 20
Comparator, 22, 47, 187322 Index
Compensation capacitor
capacitance of, 197, 203
current, 200
design of, 203
voltage, 200, 202, 203
Conventional matrix converter (CMC),
115–116
Cumulative sector timing, 91, 103, 135
Current source converter (CSC), 198
Cycloconverters, 1, 285
bridge type, 285
midpoint, 284, 285
three phase four pulse, 287, 290
three phase half wave three pulse,
287, 288
D
DAB topology, see Dual active bridge
(DAB) topology
DC generator, 57
DC link, 197, 209
DC-link voltage, 201–202
DC mode, 265, 270, 280
DC motor model subsystem, 172
DCTLIMC, see Diode-clamped threelevel indirect matrix converter
(DCTLIMC)
Delta-sigma modulation (DSM), 7, 185,
186, 188, 192, 194
for output phase matrix converter,
187–188
PWM technique, 186
three-phase MC
for induction motor drive,
192–194
model parameters, 190
simulation results, 190–192
Venturini model of, 188–190
truth table for, 188
Delta-sigma modulator, 187, 188
Demux, 91, 103, 138
Diode clamped, 63
Diode-clamped three-level indirect
matrix converter (DCTLIMC)
block diagram, 297, 298
model of, 298–299
simulation results, 300–303
truth table, 297, 298
Direct space vector modulation (DSVM),
81–82
duty cycles, 86
output voltage and input current
vectors, 82, 84
switching configurations, 82, 84, 85
Direct transfer function approach, 20
DSM, see Delta-sigma modulation
(DSM)
dSPACE, 53, 179, 182
dSPACE hardware controller board , 57,
233–236
dSPACE hardware set-up, 235, 236
DSVM, see Direct space vector
modulation (DSVM)
Dual active bridge (DAB) topology, 10,
304–307
Dual converter, 265
Dual MOSFET inverter
output voltage, 214, 224
working of, 211
Dual programmable AC to DC rectifier,
7, 154
computed values, 157
DC motor drive, 172, 178–181
MATLAB function, 154
model of, 154–155
model parameters, 156
phasor diagram, 153, 154
principle of, 152–154
program development, 157
simulation results, 158–162
Dual sine-wave AC power supply, 170,
176–177
Duty cycles, 122, 128
Duty-cycle sequencing
ASVM MC, 89, 91
DSSVM MC, 102, 104–105
ISVM MC, 135, 137–138
Dwell time, 98, 108, 142
E
Electric traction (ET), 7, 53, 60, 179, 265, 283
Electromagnetic torque, 192, 207–208
Embedded MATLAB, 21, 23, 31, 45, 47,
71, 73, 82, 89, 97, 102, 107, 135,
140, 154, 163, 188, 207
Equivalent circuit, 198Index 323
F
Filter
input, 198, 207
L-C, 197
output, 71, 73, 89, 99, 135, 163
R-L-C output, 157, 163, 207
First-order delta-sigma modulator, 186
Frequency, 71, 74
Frequency converters, 1
Future Renewable Electric Energy
Delivery and Management
(FREEDM) system, 300
G
Gainmultiplier, 157
Gate pulse, 188
Gate pulse generator, 185–186
ASVM MC, 97–98
DSSVM MC, 107–109
ISVM MC, 140–142
programmable AC to DC rectifier, 154
Gate pulse pattern, 87
Gate pulse timing calculator
ASVM MC, 95–97
DSSVM MC, 106–107
ISVM MC, 138–140
Gate timing pattern, 140
H
Hardware-in-the-loop (HIL) simulation,
7, 227, 237
dSPACE experiment, 233–236
model parameters, 230
simulation results, 232–233
SIMULINK model, 231
Harmonic spectrum, 23, 27, 47, 74, 98,
109, 143, 190, 192
High-frequency transformer (HFT), 10,
285, 298, 300, 306
Hybrid Electric Vehicle (HEV), 7, 53, 60,
179, 182, 265, 283
I
IGBT bidirectional switch, 1–2, 210
conducting modes, 217
input and output voltage waveforms,
216, 217
output of, 221
PWM gate drives for, 211, 213
working principle, 214
Indirect matrix converter (IMC),
197, 285
conventional model, 294–297
DCTLIMC topology
block diagram, 297, 298
model of, 298–299
simulation results, 300–303
truth table, 297, 298
diode clamped multilevel, 295
QZSIMC topology, 254–255
boost factor, 257, 262
duty cycle, 256–257
model development, 257–259
model parameters, 257
simulation results, 259–262
ST and NST state, 254–256
Indirect space vector modulation
(ISVM), 115
algorithm, 118–121, 314–319
MC output voltage and input
current, 127–128
switching combinations, 128–134
VSI output voltage, 121–124
VSR input current, 125–126
principle of, 115–117
three-phase ISVM MC
duty-cycle sequence and sector
switch function generator, 135,
137–138
gate pulse generator, 140–142
gate pulse timing calculator,
138–140
model of, 135, 136
model parameters, 143
output voltage and input current
reference angle calculator,
138, 139
output voltage and input current
sector calculator, 138
PWM gate signal timing, 137
simulation results, 143–146
Indirect SVM, 117
Indirect transfer function (ITF)
approach, 120–121324 Index
Induction motor (IM), 53, 197
delta-sigma-modulated MC for,
192–194
single-phase AC to three-phase AC
MC
model of, 206–207
model parameters, 204, 207
no-load test, 204–205
simulation results, 207–208
three-phase MC-fed, 53
model of, 54
parameters, 55
real-time implementation, 57–59
simulation results, 55–56
Input current, 85
Insulated Gate Bipolar Transistor
(IGBT), 23
ISVM, see Indirect space vector
modulation (ISVM)
ITF approach, see Indirect transfer
function (ITF) approach
K
Kirchhoff’s law, 4
L
LC filter, 197
Line-to-line output voltage
ASVM MC, 99–101
DSM MC, 190, 191
ISVM MC, 144–146
matrix converter
advanced modulation algorithm,
48, 50, 52
optimum Venturini modulation
algorithm, 40, 42, 44
Venturini first method, 26, 28, 31
Venturini second method, 34, 36, 37
PH3 MMC with three FC, 75, 77, 79
SSVM MC, 109–111
Line-to-neutral output voltage
ASVM MC, 99–101
DSM MC, 190, 191
ISVM MC, 144–146
matrix converter
advanced modulation algorithm,
47, 49, 52
optimum Venturini modulation
algorithm, 39, 41, 44
Venturini first method, 25, 26, 31
Venturini second method, 33,
34, 37
PH3 MMC with three FC, 74, 76, 79
SSVM MC, 109–111
Load current
ASVM MC, 99–101
DSM MC, 190, 191
ISVM MC, 144–146
matrix converter
advanced modulation algorithm,
50
optimum Venturini modulation
algorithm, 43
Venturini first method, 29
Venturini second method, 37
MMC, 79
PH3 MMC with three FC, 77
SSVM MC, 109–111
Logical and bit operator, 89, 101, 135
Logic gates, 6, 47, 73
Low-frequency modulation matrix
concept, 1, 8, 16
M
Math function, 89, 135
MATLAB function, 91, 101, 135, 154
Matrix converter (MC), 1, 15, 185
delta-sigma, 185
multilevel, 63
single phase AC to three phase AC,
198
Maximum boost control strategy, 251
model development, 252
simulation results, 252–254
voltage gain, 252
Maximum output voltage amplitude, 152
MC, see Matrix converter (MC)
MDCM, see Modulation duty-cycle
matrix (MDCM)
MMC with three flying capacitors per
output phase, 63
capacitor voltage, 63–64
input currents, 70
model of, 64
output filter circuit, 71Index 325
output voltage, 69
switch combinations, 64, 66–68
switching function, 65
three-phase, see PH3 MMC with
three FC
truth table, 65
Venturini algorithm, 70–71
Modulation algorithm, 16
advanced, 31, 45
optimum Ventrini, 21, 31
Venturini, 21
Modulation duty cycle, 17–18, 150, 152,
188, 229
Modulation duty-cycle matrix (MDCM),
81
Modulation function, 6, 20, 31, 70, 71, 73,
162, 188, 202, 229, 311
Modulation index, 122
ASVM MC, 101
definition of, 41
ISVM MC, 146
for matrix converter, 21, 45
real-time HIL simulation, 230
single programmable rectifier, 168
SSVM MC, 111
variation of, 55, 56
voltage source rectifier, 126
Modulation matrix, 1, 8, 16, 18
Modulation ratio calculation, 201–202
Modulation signal, 199
Multilevel, 63
Multilevel indirect matrix converter,
see Diode-clamped three-level
indirect matrix converter
(DCTLIMC)
Multilevel matrix converter (MMC), 6,
63, see also MMC with three
flying capacitors per output
phase
Multipliers, 73
Multiport switch, 55, 166, 179
Mux, 91, 102, 138
N
Noise peaks, 194
Noise regulation, 185, 194
No-load test, three-phase cage IM,
204–205
Non-shoot through (NST) state, 239,
see also Shoot-through (ST) state
three-phase QZSIMC, 254–256
three-phase voltage-fed ZSDMC,
240–241
O
Offset duty ratio, 42, 44
Operational amplifier, 57
Operational amplifier zero crossing
comparators, 211, 213, 214,
223, 224
Optimum Venturini modulation
algorithm, 31
line-to-line output voltage, 40, 42, 44
line-to-neutral output voltage, 39,
41, 44
load current, 43
model of, 38
phase A input current, 40, 43
program development, 35, 36
simulation results, 31, 44
OR gates, 96
Oscilloscope waveform, 98, 109,
111, 190
Output phase matrix converter,
187–188
Output power, 202, 203
Output voltage, 85
Output voltage amplitude limit, 150
P
Patent, 282
Permanent Magnet DC Motor (PMDC),
265
Phase angle, 83
Phase angle varying device, 154, 182
Phase A input current
ASVM MC, 99, 100
DSM MC, 190, 191
ISVM MC, 144, 145
matrix converter
advanced modulation algorithm,
48, 49
optimum Venturini modulation
algorithm, 40, 43
Venturini first method, 25, 27326 Index
Phase A input current (cont.)
Venturini second method, 33, 35
PH3 MMC with three FC, 75, 76, 79
SSVM MC, 110, 111
PH3 MMC with three FC, 71
gate pulse pattern, 78–79
line-to-line output voltage, 75, 77, 79
line-to-neutral output voltage, 74,
76, 79
load current, 77
model of, 72
model parameters, 73
phase A input current, 75, 76, 79
saw-tooth carrier, 78
simulation results, 74, 79
Plant simulation, 227
Polarity reversal, 265, 266
Power converter system, 82
Power factor, 44, 45, 112
Programmable AC to DC rectifier
dSPACE implementation, 179, 182
dual programmable rectifier
computed values, 157
DC motor drive, 172, 178–181
MATLAB function, 154
model of, 154–155
model parameters, 156
phasor diagram, 153, 154
principle of, 152–154
program development, 157
simulation results, 158–162
dual sine-wave AC power supply,
170, 176–177
single programmable rectifier, 158
DC motor drive, 166, 171–173
model of, 163, 164
model parameters, 168
phasor diagram, 162–163
program development, 165
simulation results, 166–170
single sine-wave AC power supply,
170, 174–175
PSCAD, 79
Pulse-width modulation (PWM), 9, 186
single-phase AC to AC converter
model
block diagram of, 209–210
model of, 211, 212
model parameters, 219
operating principle, 211, 214–217
RMS output voltage, 217–218
simulation results for, 218–220
using DC link, 209–210, 213
three-phase AC to AC converter
model
block diagram of, 220–222
model of, 222, 223
simulation results, 222, 224–225
using DC link, 220–222, 224
Pure sine-wave AC power supply, 9
Q
Quantizer, 186, 187
Quasi Z-source indirect matrix
converter (QZSIMC), 7
boost factor, 257, 262
duty cycle, 256–257
equivalent circuits, 254
model development, 257–259
model parameters, 257
simulation results, 259–262
ST and NST state, 254–256
topology of, 254–255
R
Real-Time, 57, 60, 179
hardware-in-the-loop, 227
Rectifier-fed DC motor drive
dual programmable, 172, 178–181
single programmable, 166, 171–173
REM function, 91, 95, 105, 135
REM block, 95, 105
Resistor network, 57
RLC filter, 23, 47
R-L load, 6, 9, 47, 89, 101, 157, 163, 172,
192, 197
Rotor speed, 207
RMS
of compensation capacitor voltage,
203
of output voltage, 217–218
of uniform PWM sinusoidal voltage
signal, 276, 281
Repeating sequence, 55Index 327
S
Sampling frequency, 185, 192, 194
Sampling period, 83, 87
Saw-tooth carrier, 6, 57, 71, 74, 179, 185, 207
SCR cycloconverters, see Silicon
controlled rectifiers (SCR)
cycloconverters
Sector switch function, 88, 98, 102, 135
Sector switch function generation
ASVM MC, 89, 91
DSSVM MC, 102, 104–105
ISVM MC, 135, 137–138
SEDC, see Separately excited DC (SEDC)
motors
Separately excited DC (SEDC) motors,
149, 166, 172, 179, 182, 183, 265
dual programmable rectifier-fed,
180, 181
Shoot-through (ST) state, 239, see
Non-shoot through (NST) state
three-phase QZSIMC, 254–256
three-phase voltage-fed ZSDMC,
240–241
Silicon controlled rectifiers (SCR)
cycloconverters
single-phase, 285–288
three-phase, 289–293
Simple boost control strategy, 243
input voltage envelop indicators,
244–245
model development, 246, 249
model parameters, 248
program development, 246–247
PWM signals, 244
simulation results, 248, 250–251
Single-phase AC to three-phase AC MC,
197
compensation capacitor design, 203
equivalent circuit of, 198
modulation ratio calculation, 201–202
three-phase cage IM
model development, 206–207
model parameters, 204, 207
no-load test, 204–205
simulation results, 207–208
virtual inverter control, 200–201
virtual rectifier control, 198–200
Single-phase midpoint SCR
cycloconverter
circuit configuration, 286
model of, 287, 288
simulation results, 288
Single-phase PWM AC to AC and AC to
DC converter
AC mode operation, 268–269
block diagram, 265–266
DC mode operation, 270–271
model of, 266–268, 271–272
model parameters, 273
simulation results, 273–276
Single-phase PWM AC to AC converter
block diagram of, 209–210
model of, 211, 212
model parameters, 219
operating principle, 211, 214–217
RMS output voltage, 217–218
simulation results for, 218–220
using DC link, 209–210, 213
Single-phase SCR bridge cycloconverter
circuit configuration, 285–286
model of, 286, 287
simulation results, 287
Single programmable AC to DC
rectifier, 158, 163
DC motor drive, 166, 171–173
model of, 163, 164
model parameters, 168
phasor diagram, 162–163
program development, 165
simulation results, 166–170
Single sine-wave AC power supply, 170,
174–175
Slider gain block, 154, 157
Solid-state transformers (SST), 7, 285,
298, 306
block diagram, 300, 303
DAB topology, 304
model development, 305
model parameters, 306
simulation results, 304, 306–307
using direct AC to AC converter
topology
block diagram, 307
model development, 311
simulation results, 308, 310–311328 Index
Sources block set, 89, 101, 135
Source code, 22, 47, 73, 138, 207
Space vector hexagon, 82
Space vector modulation (SVM), 81–83,
85, 115, 117
ASVM, 86, 88
DSSVM, 99, 109
DSVM, 81, 82
Indirect, 115, 118
SSVM, 86, 109
Space vector pulse-width modulation
(SVPWM), 115
Speed control, 166, 182
Squirrel cage IM, single-phase AC to
three-phase AC MC
model development, 206–207
model parameters, 204, 207
no-load test, 204–205
simulation results, 207–208
SST, see Solid-state transformers (SST)
SSVM, see Symmetrical space vector
modulation (SSVM)
Stator current, 207
ST duty cycle, 248, 251, 254, 256
Step-down transformer, 211, 213
ST state, see Shoot-through (ST) state
SUBTRACT modules, 91, 102, 105, 135
Summer, 22, 73
SVM algorithm, 83
SVM, see Space vector modulation (SVM)
Switching cells, 71
Switching configurations, 83, 84, 85, 86
Switching frequency, 65, 146, 163
Switching function, 16–17, 65, 73, 118, 228
Switching period, 128, 135
Symmetrical space vector modulation
(SSVM)
gate pulse timing, 106
gate pulse generator, 107
reference angle calculator, 105
rules for, 86, 87
switching pattern, 89
zero configuration for, 88
T
THD, see Total harmonic distortion
(THD)
Three-phase AC to single-phase AC MC
input-output relation, 228–229
model of, 227–228
modulation duty cycle, 229
modulation function, 229
real-time HIL simulation, see
Hardware-in-the-loop (HIL)
simulation
switching function, 228
Venturini algorithm, 227, 229, 230
Three-phase AC to three-phase AC MC,
149, 239
advanced modulation algorithm, 31
gate pulse pattern, 51
input voltage, 36
line-to-line output voltage, 48,
50, 52
line-to-neutral output voltage, 47,
49, 52
load current, 50
matrix converter parameters, 45
model of, 45, 46
modulation index, 41
offset duty ratio, 42, 44
output voltage, 37, 39
phase A input current, 48, 49
program development, 52–53
simulation results, 47, 52
triangle carrier, 45, 51
advantages, 115
algorithms, 18–20
applications of, 7
bidirectional switch, 15–16
mathematical expression, 17
maximum output voltage amplitude
for, 150–152
model of, 6–7, 21
modulation duty cycle, 17–18, 150
optimum Venturini modulation
algorithm, 31
line-to-line output voltage, 40, 42,
44
line-to-neutral output voltage, 39,
41, 44
load current, 43
model of, 38
phase A input current, 40, 43
program development, 35, 36
simulation results, 31, 44
requirements for, 6Index 329
switching combinations, 5
switching function, 16–17
three phase alternator, 57
three-phase induction motor, 53–59
topology of, 3, 4
total harmonic distortion, 57
Venturini first method, 23
gate pulse pattern, 30
line-to-line output voltage, 26, 28,
31
line-to-neutral output voltage, 25,
26, 31
load current, 29
matrix converter parameters, 21
model of, 24
phase A input current, 25, 27
program development, 21, 22
saw-tooth carrier, 29
simulation results, 31
Venturini second method, 23
line-to-line output voltage, 34,
36, 37
line-to-neutral output voltage, 33,
34, 37
load current, 37
model of, 32
phase A input current, 33, 35
program development, 28, 30
simulation results, 27, 37
Three-phase ASVM MC, 88, 89
duty-cycle sequence and sector
switch function generator,
89, 91
gate pulse generator, 97–98
gate pulse timing calculator, 95–97
model parameters, 99
output voltage and input current
reference angle calculator, 95
output voltage and input current
sector calculator, 91–95
simulation results, 98–99
Three-phase cage induction motor (IM),
192
model development, 206–207
model parameters, 204, 207
no-load test, 204–205
simulation results, 207–208
Three-phase conventional IMC,
294–297
Three-phase diode-clamped multilevel
IMC
block diagram, 297, 298
model of, 298–299
simulation results, 300–303
truth table, 297, 298
Three-phase DSM MC
for induction motor drive, 192–194
model parameters, 190
simulation results, 190–192
Venturini model of, 188–189
Three-phase DSSVM MC, 99
duty-cycle sequence and sector
switch function generator, 102,
104–105
gate pulse generator, 107–109
gate pulse timing calculator, 106–107
model of, 103
output voltage and input current
reference angle calculator, 105
output voltage and input current
sector calculator, 102
simulation results, 109–111
Three-phase four-pulse SCR bridge
cycloconverter
model of, 292, 293
power delivery to three-phase load,
289, 290
simulation results, 294
Three-phase half wave three pulse SCR
cycloconverter
circuit configuration, 289
model of, 290, 291
power delivery to three-phase load,
290
simulation results, 292
Three-phase induction motor (IM), 53,
57
load, 197
model of, 54
parameters, 55
real-time implementation, 57–59
simulation results, 55–56
Three-phase ISVM MC
duty-cycle sequence and sector
switch function generator, 135,
137–138
gate pulse generator, 140–142
gate pulse timing calculator, 138–140330 Index
Three-phase ISVM MC (cont.)
model of, 135, 136
model parameters, 143
output voltage and input current
reference angle calculator,
138, 139
output voltage and input current
sector calculator, 138
PWM gate signal timing, 137
simulation results, 143–146
Three-phase MMC, 71, 74, 79
Three-phase PWM AC to AC and AC to
DC converter
block diagram of, 273, 277
model of, 277
simulation results, 276, 279–281
Three-phase PWM AC to AC converter
block diagram of, 220–222
model of, 222, 223
simulation results, 222, 224–225
using DC link, 220–222, 224
Three-phase QZSIMC
boost factor, 257, 262
duty cycle, 256–257
model development, 257–259
model parameters, 257
simulation results, 259–262
ST and NST state, 254–256
topology of, 254–255
Three-phase voltage-fed ZSDMC,
319–320
boost factor, 242
configuration, 239–240
maximum boost control, 251
model development, 252
simulation results, 252–254
voltage gain, 252
simple boost control, 243
input voltage envelop indicators,
244–245
model development, 246, 249
model parameters, 248
program development, 246–247
PWM signals, 244
simulation results, 248, 250–251
ST and NST state, 240–241
Three pole double throw switch, 55
Three winding transformer, 7, 266, 268,
271, 283, 286
Thyristor cycloconverters, 1, 285
Timing pulse, 154
Total harmonic distortion (THD), 57, 111,
112, 143, 194
Transfer matrix, 1, 16, 124, 126
Triangle carrier, 45, 48, 51, 91, 92, 103,
135, 185, 258
Triangle generator, 47
U
Uniform square PWM sinusoidal
voltage signal, 276
average output voltage, 282
RMS value, 276, 281
Unity input phase displacement factor,
20, 229
V
Variable-frequency variable-voltage
pure sinewave AC power
supply, 169, 170
Variable speed, 197
Venturini first method, 23
gate pulse pattern, 30
line-to-line output voltage, 26, 28, 31
line-to-neutral output voltage, 25,
26, 31
load current, 29
matrix converter parameters, 21
model of, 24
phase A input current, 25, 27
program development, 21, 22
saw-tooth carrier, 29
simulation results, 31
Venturini model, 188, 192, 195
Venturini modulation algorithm, 150,
229, 311–312
Venturini second method, 23
line-to-line output voltage, 34, 36, 37
line-to-neutral output voltage, 33,
34, 37
load current, 37
model of, 32
phase A input current, 33, 35
program development, 28, 30
simulation results, 27, 37
Virtual DC-link voltage, 201–202Index 331
Virtual inverter control, 200–201
Virtual rectifier control, 198–200
Virtual rectifier-inverter, 197
Voltage gain
conventional matrix converter, 10
indirect matrix converter, 120
maximum boost control strategy, 252
with three-phase QZSIMC, 10, 254
Voltage source inverter (VSI) output
voltage, 120–124
Voltage source rectifier (VSR), 120–121
input current, 125–126
modulation index, 126
Z
Zero configurations
asymmetrical space vector
modulation, 87
symmetrical space vector
modulation, 87, 88
Zero crossing comparator (ZCC)


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب AC to AC Converters Modelling, Simulation, and Real-Time Implementation Using SIMULINK
رابط مباشر لتنزيل كتاب AC to AC Converters Modelling, Simulation, and Real-Time Implementation Using SIMULINK
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب AC to AC Converters Modelling, Simulation, and Real-Time Implementation Using SIMULINK
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب What Every Engineer Should Know about Developing Real-Time Embedded Products
» كتاب Real-Time Digital Signal Processing from MATLAB to C with the TMS320C6x DSPs
» كتاب Process Modelling and Simulation with Finite Element Methods
» كتاب Simulation of Dynamic Systems with MATLAB and Simulink
» كتيب بعنوان Modeling and Simulation of AC Machine Using Matlab Simulink

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى كتب ومحاضرات الأقسام الهندسية المختلفة-
انتقل الى: